Favourable Lipid Modulatory And Renal Protective Effects Of Ginger And Fish Oil In Hypercholesterolemic Male Rats

Farahat A.A., Salem H.A., Abass H.I., Elmosalamy S.H., Hassan N. M.
Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Egypt

Abstract

Hypercholesterolemia is one of the most important risk factors for atherosclerosis and subsequent cardiovascular diseases. In the present study, the therapeutic effects of ginger and fish oil supplementation on serum lipid profile and kidney functions in high cholesterol diet-induced hypercholesterolemia in rats have been evaluated. The animals were divided into 4 groups of 12 rats each. Group I served as the control. Rats in groups II, III and IV were fed with an atherogenic diet for 8 weeks, group III received atherogenic diet supplemented with 5% ginger, group IV received atherogenic diet supplemented with 10% fish oil. The treatment with ginger and fish oil results in significant reduction in elevated serum total cholesterol, triglycerides (TG), low density lipoproteins (LDL) and very low density lipoproteins (VLDL) and elevation in high density lipoproteins (HDL), marked modulation of atherogenic index (AI) has been noted. Also, there was significant reduction in serum urea, uric acid and creatinine levels which was markedly elevated by atherogenic diet. We concluded that dietary supplementation with ginger and/or fish oil have favorable effects on serum lipid parameters and kidney functions in hypercholesterolemic male rats.

Key words: hypercholesterolemia, ginger, fish oil, lipid, kidney

Introduction

Hypercholesterolemia is a metabolic disorder characterized by high serum levels of cholesterol and LDL-c (Akinyemi et al., 2015). Hypercholesterolemia also considered as one of the major risk factors of many cardiovascular diseases (Tzang et al., 2009). Cardiovascular diseases remain one of the major causes of mortality. They are common not only in general population but also in individuals with chronic liver disease (Tandra & Vuppalanchi, 2009) and in those with diabetes or metabolic syndrome, where the imbalance of cholesterol homeostasis increases the independent risk factor for development of peripheral vascular (PVD) and coronary artery disease (CAD) (Rozman & Monostory, 2010; Stapleton et al., 2010).

Although hypercholesterolemia itself is asymptomatic, atherosclerosis may result from chronic increase of serum cholesterol (Bhatnagar et al., 2008). Long standing increase in serum cholesterol attributes to the formation of arterial atheromatous plaques (Finn et al., 2010). Hypercholesterolemia is well known to be an independent risk factor for renal injury and to aggravate the pathogenesis of a variety of clinical and experimental renal diseases (Fadl Alla et al., 2014).

In the search for naturally occurring compounds, various efforts are now concentrated on many herbal plant extracts and natural products due to their potential to induce antioxidant activity and other biological functions that have several beneficial effects on the living organisms (Olorunnisola et al., 2012). Fish oil contains the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), precursors of certain eicosanoids, It was shown to have favorable modulatory effect on lipid metabolism (Hamadani et al., 2011). In addition, it has beneficial effect on the course of glomerular injury and was proven to have significant renal protective activity (Fernandez et al., 2004). Ginger is considered one of the medicinal plants that have many functional properties that can affect positively many physiological functions (Kumar and Sharma, 2014). Ginger was stated to reduce LDL concentration, increase in HDL and reduce triglyceride concentrations, Ginger can reduce the risk of heart disease due to the rich phytochemistry of ginger that includes components that scavenge free radicals produced in biological systems and led to decrease in lipid peroxidation. Also it led to reduction in renal nephropathy and has significant renal protective power (Afshari et al., 2007).
Material And Methods

Animals and Experimental design:
Forty eight mature male Sprague-Dawley rats, of an average body weight 150-200g, were obtained from the animal house, Faculty of Veterinary Medicine, Cairo University. They were housed in plastic cages with wood shaving bedding and a constant cycle of 12h light and 12h darkness. Rats were kept for two weeks before the experiment for adaptation.

Experimental design:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Rats(no.)</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group (I)</td>
<td>12</td>
<td>Rats served as control, maintained on control diet and ad libitum water supply for 8 weeks</td>
</tr>
<tr>
<td>Group (II)</td>
<td>12</td>
<td>Rats served as hyperchoesterolemic rats, maintained on atherogenic diet and ad libitum water supply for 8 weeks.</td>
</tr>
<tr>
<td>Group (III)</td>
<td>12</td>
<td>Rats served as hyperchoesterolemic rats+ fishoil, maintained on atherogenic diet + 10% fish oil and ad libitum water supply for 8 weeks.</td>
</tr>
<tr>
<td>Group (IV)</td>
<td>12</td>
<td>Rats served as hyperchoesterolemic rats+ ginger, maintained on atherogenic diet + 5% ginger and ad libitum water supply for 8 weeks.</td>
</tr>
</tbody>
</table>

Sampling and techniques: The animals were starved overnight for 12h before blood was collected. Blood was collected from eye canthus in all rats under light ether anesthesia into heparinized tubes, then these tubes centrifuged for 10 minutes at 4000 r.p.m to obtain plasma. Serum samples also collected and centrifuged for 4000 r.p.m.

Chemicals:
Fish oil: Spring Valley fish oil was purchased from Spring Valley, USA. It was added by 10% to the atherogenic diet on the expense of fat (Sinclair and Gibson, 1992).
Ginger: Ginger (fine powder) 400 mg. was purchased from Arab Company for Pharmaceuticals & Medicinal Plants (MEPACO-MEDIFOOD) – Egypt. It was added by 5% to atherogenic diet on the expense of carbohydrates (Uz et al., 2009).
Thiouracil: Thyrocil (propylthiouracil) 50 mg. we add them to the atherogenic diet by 0.1%. It was purchased from AMOUN PHARMACEUTICAL CO. S.A.E. – Egypt (Lin et al., 2017).

Other chemicals: Cholesterol, all vitamins and minerals were obtained from El-Gomhoriya Company, Cairo, Egypt. Bile salts were obtained from El Shark El Awsat Company, Cairo, Egypt. Milk powder, butter, wheat flour, sugar were purchased from the local market.

Preparation of atherogenic diet:
Atherogenic diet was prepared according to Maruthappan and Shree 2010. With modification by the addition of bile salts to diet to enhance cholesterol absorption and thiouracil to induce atherosclerosis in rats. Composition of normal and atherogenic diet.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Normal diet (%)</th>
<th>Atherogenic diet (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein (milk powder)</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Carbohydrates (wheat flour)</td>
<td>71</td>
<td>58.4</td>
</tr>
<tr>
<td>Sugar</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>Fat (butter)</td>
<td>05</td>
<td>16</td>
</tr>
<tr>
<td>Salts</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>Vitamins</td>
<td>01</td>
<td>02</td>
</tr>
<tr>
<td>Fibers</td>
<td>02</td>
<td>01</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>-</td>
<td>01</td>
</tr>
<tr>
<td>Bilesalts</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>thiouracil</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Total weight</td>
<td>100 g</td>
<td>100 g</td>
</tr>
</tbody>
</table>

Biochemical Measurements: Cholesterol and high density lipoproteins were estimated according to (Finley et al., 1978). Measurement of triglyceride levels was according to Scheletter and Nussel, 1975. Kits were purchased from Gamma trade-cairo-egypt.
Low density lipoproteins (LDL)-Cholesterol was determined according to Friedewald et
al.(1972) equation (LDL-C=TC-HDL-C-TG/5).
The Friedewald equation is used to calculate Very low density lipoprotein cholesterol. The formula published by Friedewald et al in 1972 was validated by Warnick et al in 1990 (VLDL-c = Triglycerides/5)
Atherogenic index was calculated by using the formula of Schulpis and Karikas,1998.
Atherogenic Index (AI) = Total Cholesterol – HDL

Urea was determined according to Fawcett and Scott, 1960. Uric acid was determined according to Fossati et al., 1980 method. While Creatinine was determined according to Schirmeister et al., 1964 method. Kits were purchased from Biodiagnostic company–Egypt.

Histopathological studies: Autopsy samples were taken from heart, thoracic aorta and kidneys of rats in different groups at the end of experiment and stained by hematoxyline and eosin stain then examination was done by using light electric microscope (Bancrofet et al., 1996).

STATISTICAL ANALYSIS: All data presented as mean ± standard error (SE) and

<table>
<thead>
<tr>
<th>Groups</th>
<th>Control</th>
<th>Hyperchol.</th>
<th>Hyperchol.+ ginger</th>
<th>Hyperchol.+ fish oil</th>
<th>LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol mg/dl</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77.8 ±3.6</td>
<td>242.5 ±8.6</td>
<td>91.5 ±4.4</td>
<td>153.9 ±4.6</td>
<td>11</td>
</tr>
<tr>
<td>Triglycerides mg/dl</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62.3 ±1.6</td>
<td>130.1 ±2.8</td>
<td>75.1 ±1.0</td>
<td>98.5 ±2.1</td>
<td>4.3</td>
</tr>
<tr>
<td>LDL mg/dl</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.4 ±3.1</td>
<td>209 ±7.5</td>
<td>38 ±2.6</td>
<td>106.6 ±3.3</td>
<td>8.8</td>
</tr>
<tr>
<td>HDL mg/dl</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.9 ±1.5</td>
<td>18 ±0.9</td>
<td>34.4 ±1.1</td>
<td>24 ±0.4</td>
<td>2</td>
</tr>
<tr>
<td>VLDL mg/dl</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.5 ±0.3</td>
<td>26 ±0.3</td>
<td>15 ±0.2</td>
<td>19.7 ±0.4</td>
<td>0.73</td>
</tr>
<tr>
<td>AI</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 ±0.04</td>
<td>12.6 ±0.3</td>
<td>1.6 ±0.05</td>
<td>5.4 ±0.09</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Means ± S.E, (N) number of rats/group=12, Means within the same row having different superscript letters are significantly different at P < 0.05

Effect of Ginger and Fish oil on Urea, Uric acid and Creatinin concentration in hypercholesterolemic male rats
Data illustrated in table (2) showed that the urea, uric acid and creatinin levels were elevated in hypercholesterolemic male rats if compared with treated groups and even control group. Upon supplementation of atherogenic diet with ginger and fish oil, urea uric acid and creatinin showed significant amelioration when compared with hypercholesterolemic group. As these groups showed significant decrease in urea, uric acid and creatinin levels if compared with hypercholesterolemic rats at P < 0.05.
Table (2): Effect of Ginger and Fish oil on Urea, Uric acid and Creatinin concentration in hypercholesterolemic (Hyperchol.) male rats

<table>
<thead>
<tr>
<th>Groups parameters</th>
<th>Control</th>
<th>Hyperchol.</th>
<th>Hyperchol.+ ginger</th>
<th>Hyperchol.+ fish oil</th>
<th>LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea mg/dl</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>e</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>36.3 ±1.2</td>
<td>77 ±1.6</td>
<td>39.5 ±1.1</td>
<td>52.8 ±1.3</td>
<td></td>
</tr>
<tr>
<td>Uric acid mg/dl</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>e</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>1.9 ±0.03</td>
<td>6.0 ±0.09</td>
<td>2.3 ±0.06</td>
<td>3.2±0.07</td>
<td></td>
</tr>
<tr>
<td>Creatinin mg/dl</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>0.8 ±0.02</td>
<td>1.9 ±0.02</td>
<td>0.79 ±0.02</td>
<td>1.3 ±0.07</td>
<td></td>
</tr>
</tbody>
</table>

Means ± S.E, (N) number of rats/group=12. Means within the same row having different superscript letters are significantly different at P < 0.05

Histopathological findings:

Fig.1 (Control): Heart showing no histopathological alteration and the normal histological structure of the myocardial bundles (H&E X 400).

Fig.2 (Hyperchol.): Heart showing Multiple focal areas of degeneration with inflammatory cells infiltration were detected in the myocardium (recent infarctions) associated with focal haemorrhages (H&E X 400).

Fig.3 (Hyperchol.+ Ginger): The myocardium showed few focal degenerative change while others had less focal inflammatory cells infiltration (H&E X 400).

Fig.4 (Hyperchol.+ Fish oil): The myocardium showed few degenerative change associated with congestion in the blood vessels (H&E X 400).
Fig.5 (control): Aorta showing no histopathological alteration and the normal histological structure of the tunica intima, media and adventitia of the vascular wall (H&E X 400).

Fig.6 (Hyperchol.): Aorta showing diffuse vacuolization in the media of the vascular wall (H&E X 400).

Fig.7 (Hyperchol.+Ginger): Aorta showing Few vacuolization in the media (H&E X 400).

Fig.8 (Hyperchol.+Fishoil): Aorta showing focal few vacuolization in the media (H&E X 400).

Fig.9 (Control): Kidneys showing Normal renal glomeruli and renal tubules (H&E X 400).

Fig.10 (Hyperchol.): Kidneys showing degenerative renal tubules (H&E X 400).
Fig.11 (Hyperchol.+Ginger): Kidneys showing congestion in the interstitial blood vessels with no changes in renal tubules (H&E X 400).

Fig.12 (Hyperchol.+Fish oil): Kidneys showing congestion of the glomerular and peri tubular blood capillaries and few alteration in renal tubules (H&E X 400).

Discussion
In the present study, atherogenic diet feeding for 8 weeks was chosen as the experimental model of hypercholesterolemia. High fat diet containing 1% cholesterol + 0.25% bile salts was able to increase total cholesterol and LDL-C in Sprague Dawley rats likely by attenuation of bile acid production. Despite, such elevations alone will not promote atherosclerosis unless a thyroid hormone inhibitor is added (thiouracil), Propylthiouracil inhibits thyroid hormone by blocking iodine oxidation resulting in decrease of lipid metabolism. The presence of bile salts aids cholesterol and fat Absorption, and also suppresses conversion of cholesterol to bile acids reduces removal of cholesterol and increases cholesterol levels (Shyam Sunder et al., 2010). These was found to be on line with our results illustrated in Table (1), as it shows that the highest cholesterol levels were recorded in the untreated hypercholesterolemic group if compared with control and rats receiving several treatments. In addition, untreated hypercholesterolemic rats showed significant elevation in LDL-C, VLDL-C, AI and triglycerides if compared with control and all treated groups. However, it showed significant reduction in HDL cholesterol comparable with control group and those groups treated with ginger or fish oil. These results was found to agree with Murugaiah et al., 1999; Stoilova et al., 2007; Abd El-Hamid et al., 2015. Several studies revealed a significant elevation of plasma leptin concentration in hyperlipidemic and diabetic rats. Leptin levels were positively correlated with triglyceride, cholesterol and LDL and an inverse relationship was found between leptin and HDL (Zabut et al., 2007). The hypercholesterolemia itself might induce increased serum leptin level (Hang et al., 2012). Hypercholesterolemic rat model is represented for cardiovascular and cerebrovascular disease research, which can be established by feeding with 0.5%-1.0% cholesterol-supplement diet for several weeks. Dietary 0.5%-1.0% cholesterol can increase serum VLDL and LDL levels dramatically in rats. In this case, dietary cholesterol remarkably disturbed triglyceride (TG) metabolism (Wang et al., 2010).

Also, the high levels of LDL-C found in hypercholesterolemic rats, may be attributed to a down regulation in LDL receptors by cholesterol and saturated fatty acids included in the diet, moreover, this increase in LDL-C level after high fat diet consumption might be explained via involvement of two enzymes namely cholesterol ester hydrolase and cholesterol ester synthetase. These enzymes balance the cholesterol levels in the blood. With increased esterifying activity (when cholesterol ester hydrolase: cholesterol ester synthetase is lowered) cholesterol will be predominantly in its ester form (as in LDL-C) and can lead to the development and progression of atherosclerosis (Hussein et al., 2014).

Hepatic TG level is controlled mainly by TG synthesis, beta-oxidation and secretion in the form of lipoprotein. The hepatic TG accumulation by high dietary cholesterol was
involved in the stimulation of fatty acid and TG synthesis in rats. Hepatic fatty acid betaoxidation is another factor to affect the hepatic TG level. Carnitine palmitoyltransferase 1 (CPT1) is the rate-limiting enzyme of the mitochondria beta-oxidation pathway, hepatic CPT1 activity mRNA levels were inhibited drastically by the cholesterol treatment. Those results demonstrated that the cholesterol administration reduced fatty acid catabolism, which may account for the enhancement of hepatic TG level (Wang et al., 2010).

AI or LDL/HDL cholesterol ratio is one of the important components and indicators of vascular risk, the predictive value of which is greater than the isolated parameters. In this respect, an increase in total cholesterol concentration, and specifically LDL cholesterol, is an atherogenic lipid marker, whereas reduced HDL cholesterol concentration is correlated with numerous risk factors, including the components of the metabolic syndrome (Millán et al., 2009).

Histopathological findings of hypercholesterolemic group in fig.2 showed multiple focal areas of degeneration with inflammatory cells infiltration were detected in the myocardium (recent infarctions) associated with focal haemorrhages, The myocardial vascular wall was thick and showed vacuolization in the media. While fig.6 showed diffuse vacuilation in the media in the vascular wall of aorta. These findings agree with Munshi et al. (2014), they recorded that The hypercholesterolemic (HC) rats showed histopathological changes representing structural alterations of the aortic wall indicating development of atherosclerotic changes. Similarly, the myocardial tissue was found to be damaged in the Hypercholesterolemic diet group (Suanarunsawat et al., 2011).

Data presented in our study revealed that Ginger treatment increase the activity of liver microsomal aryl hydroxylase (AHH), and bile acid secretion. 7a-Hydroxylase is the rate-limiting enzyme in the catabolic conversion of cholesterol to bile acids in the liver. The activation of this enzyme by ginger, increases bile acid secretion and in turn decrease the concentration of serum cholesterol observed in the ginger-treated rats (Murugaiah et al., 1999 and Olubunmi, 2011).

Whereas ginger treatment decreased the concentration of both LDL and VLDL in these rats, ginger is known to have strong antioxidant activity and thus it may prevent LDL oxidation in the serum, thus allowing normal binding of LDL to its receptors, permitting its uptake, and lysis by the cells. Thus, the LDL concentration of plasma may be decreased in ginger treated animals (Murugaiah et al., 1999 and Stoilova et al., 2007). And HDL-C increased significantly (Olubunmi, 2011). Administration of ginger showed significant decrease in plasma leptin levels in hyperlipidemic and diabetic rats. These explained due to gingerol which is a major chemical component of the ginger rhizome cause decreased in plasma leptin levels (Saravanan et al., 2014) so that led to elevation in HDL-C and may also due to ginger behaves like hypocholesterolaemic agents (Omnia, Abd El-Hamid et al., 2015). Though the atherogenic index was increased on feeding the atherogenic diet, it significantly decreased in rats treated with ginger, emphasizing the protective role of ginger in atherosclerosis (Murugaiah et al., 1999). Results revealed that there is lowering in the concentration of serum triglycerides on ginger supplementation if compared with hypercholesterolemic group, this may have resulted from stimulation of the skeletal muscle lipoprotein lipase and adipose tissue hormone-sensitive lipase activity by ginger administration, leads to increase in the uptake of plasma triglycerides by skeletal muscle and adipose tissue. Also, decreased levels of free fatty acids on ginger supplementation may also be a cause for reduced triglyceride levels, because ginger has an inhibitory action on the lipogenic enzymes (Murugaiah et al., 1999: Olubunmi, 2011).

Histopathological findings of the GINGER treated group in fig.3 showed that myocardium has few focal degenerative change while others had less focal inflammatory cells infiltration. On the other hand, aorta in fig.7 revealed few vacuolization detected in the media. These results in accordance with Ilkhanizadeh et al., 2016, they recorded significant amelioration of changes in the heart structure upon ginger treatment. The findings indicated that ginger extract significantly reduces heart structural abnormalities.
Data presented in this study revealed significant reduction in serum cholesterol, LDL, VLDL triglycerides, significant elevation in HDL cholesterol and significant improvement in atherogenic index after administration of fish oil to hypercholesterolemic rats. These results agree with Luka and Mohammed, 2013 and Abdel-Moneim et al., 2015. Fish oil containing EPA and DHA long chain polyunsaturated fatty acids (PUFAs) was able to reduce serum tri-acylglycerol (TAG) and cholesterol and increased secretion of cholesterol, phospholipids and bile acids in rats, however most of cholesterol secreted in the form of HDL (Morgado et al., 2005). The n-3 fatty acids stimulate cholesterol secretion into bile salts, which can give reason why fish oil intervention shows no increase in serum cholesterol. In addition, de Castro et al. (2015) reported that serum TAG, total cholesterol and HDL cholesterol were higher in fructose fed rats and fish oil reversed these alterations. Also, these groups have lower non-HDL cholesterol, which indicates a significant reduction in more atherogenic lipoproteins. N-3 fatty acids was recorded to upregulates lipogenic gene expression of (SREBP-1c) and (ChREBP) are major transcriptional regulators that induce key lipogenic enzymes to promote lipogenesis in the liver (de Castro et al., 2015). The increase in HDL-C observed in our study, might be due to stimulation reverse cholesterol transport as demonstrated by previous study (Makni et al., 2008). Fish oil administration in hyperlipidemic rats inhibits the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), which is the rate-limiting enzyme in cholesterol biosynthesis (Luka and Mohammed, 2013).

In addition, fish oil treated group in fig.4 showed focal few inflammatory cells infiltration was detected in the myocardium. The subpericardium blood vessels were congested while the deep myocardial one showed thick hypertrophied wall with vacuolar endothelium. Aorta in fig.8 showed focal few vacuolization in the media. These results in parallel with Park and Park (2009). Moreover, Rahman et al., 2016 recorded that dietary supplementation of fish oil to hypercholesterolemic rats led to alleviation of the myocardial injury induced by hypercholesterolemia.

Data presented showed significant elevation in serum (urea, uric acid and creatinine) in hypercholesterolemic group comparable with control and all treated groups. Recent studies have shown that orally feeding animals with high fat diet for a period of time can raise their cholesterol, increase production of low density lipoprotein cholesterol (LDL-C) and promote the de novo synthesis of purine nucleotide. This will eventually lead to increased generation of uric acid while its excretion is decreased (Pang et al., 2017). Another study found that high cholesterol levels can also cause oxidative stress, and uric acid production was accelerated in case of oxidative stress, which ultimately leads to elevated serum uric acid levels (Bainbridge and Roberts, 2008). Urea and creatinine levels are considered as markers of kidney injury when they are elevated in blood (Khan et al., 2010). Kidneys remove metabolic waste products such as urea, uric acid, creatinine, so body fluids homeostasis are maintained. It has been suggested that the concentrations of the metabolites increase in blood during renal diseases or renal damage may be due to enhancement in the activities of xanthine oxidase, lipid peroxidation, and increased triacylglycerol and cholesterol levels (Khan et al., 2010; Barakat & Mahmoud, 2011). Elevation in serum urea level in hypercholesterolemic group indicates the impairment in the kidney function, as the mechanism of removing it from the blood might have been affected. It may also be an evidence of impairment at the renal glomerular and tubular levels, it has been confirmed by many biochemical and histopathological findings that kidney functions were affected in hypercholesterolemia conditions (Barakat & Mahmoud, 2011). So that creatinin removal was impaired too (Allen, 2012).

Histopathological findings of the hypercholesterolemic rats in fig.10 revealed that Kidneys has degenerative renal tubules. These results agree with Schaeffner et al. (2003) they observed that hypercholesterolemia results in severe tubular degeneration and necrosis, protein cast accumulation, and medullary congestion. Results showed that ginger treatment showed significant improvement in serum urea, uric acid and creatinine if compared with
hypercholesterolemic group. These results in accordance with Hamed et al., 2012, who confirmed the potent nephroprotective properties of ginger. They found that treatment with different extracts of ginger ameliorated kidney function markers (urea, creatinine and total proteins). Additionally, Mehrdad et al. (2007) stated that ginger has a beneficial effect for removal of urea and creatinine from plasma of normal mice treated with its alcoholic extract and considered as a therapeutic herb to manage renal function. These results agree with Lebda et al. (2012). They reported that the presence of polyphenols and flavonoids in ginger extract might be responsible for the antioxidant nephroprotective activities and the reduction of serum urea and creatinine levels. These found to be inline with Rodrigues et al., 2014 recorded significant improvement in kidney functions with gingerol-enriched fraction supplementation and this protection was associated with reductions in oxidative stress and (nitric oxide) NO production and with down regulation of inflammatory gene expression. Based on the in vivo results, the oral administration of ginger exerts notable hypouricemic effects in hyperuricemic but not in normal rats. These results indicate that ginger might have fewer side effects than allopurinol in treatment of hyperuricemia as allopurinol led to serum uric acid levels reduction of both hyperuricemic and normal rats (Al-Azzawie and abd, 2015). The inhibitory effect of ginger and its major flavinoid Gingerols on serum xanthin oxidase (XO) activity was also confirmed as XO is the key enzyme in the catabolism of purines and has a critical role in the endogenous production of uric acid (Owen and Johns, 1999).

Histopathological findings of the ginger treated group in fig.11 revealed that kidneys showing congestion in the interstitial blood vessels with no changes in renal tubules. The

Conclusion

It could be concluded that ginger and fish oil supplementation decrease cholesterol, LDL, VLDL and triglycerides, while it increases HDL and showed anti-atherogenic potency against corrective histopathological findings after treatment with ginger extracts give an additional support that ginger mops up free radicals generation, reduces inflammation, improves kidney function, and induces healthy state of renal cells, suggesting its role as renal protective agent. This was attributed to their abundance of natural antioxidants: flavonoids, sterols, and alkaloids (Hamed et al., 2012).

Data presented in this study showed significant amelioration in serum (urea, uric acid and creatinine) in fish oil treated group when compared with hypercholesterolemic group. These results found to agree with Soltan (2012). These result may be due to the containing fish oil on polyunsaturated EPA and DHA. de Assis et al. (2015) stated that dietary n-3 polyunsaturated fatty acids reverse renal insult that increase the amounts of advanced glycation end product in rats. It has been reported that the high advanced glycation end products (HAGE) in fat-containing diet elevates the serum creatinine, tumor necrosis factor-α, thiobarbituric acid reactive substances(TBARS), and reactive oxygen species (ROS) levels and receptor for advanced glycation end products of the kidneys. Omega-3 Polyunsaturated fatty acids ameliorate these alterations and prevent renal dysfunction via antioxidant and anti-inflammatory pathways. DHA and EPA have several anti-inflammatory effects as they are oxidized by cyclo-oxygenase, lipoxygenases, or cytochrome P450 monooxygenases to produce docosanoids and EPA-derived eicosanoids, which have anti-inflammatory effects (Katakura et al., 2014).

Histopathological findings of fish oil treated group in fig. 12 showed improvement in renal abnormalities induced by hypercholesterolemic diet, same results obtained by Hassan et al. (2015), they documented fish oil nephroprotective potency against cisplastine nephrotoxicity hypercholesterolemia as well as they revealed marked improvement in renal functions and attenuate insult induced by atherogenic diet in cardiac tissue, aorta and kidney.
References

Sinclair and R. Gibson, eds. 1992.: Essential fatty acids and eicosanoids Champaign, Illinois, USA. American Oil Chemists' Society. 353pp

Soltan S S (2012): the Effects of Varieties Sources of Omega-3 Fatty Acids on Diabetes in Rats . Food and Nutrition Sciences, 3:1404-1412

The mechanism of dietary cholesterol effects on lipids metabolism in rats. Lipids in Health and Disease, 9: 4.

(الملخص العربي)

تحسين في مستويات دهون الدم ووظائف الكلي نتيجة استخدام الزنجبيل وزيت السمك في ذكور الفئران عاليه الكوليسترول

ارتفاع كوليسترول الدم هو أحد أهم العواملológية باثلاحة لاصابة تصلب الشرايين وأمراض القلب والأوعية الدموية. قد تم في هذه الدراسة تقييم الآثار العلاجية للزنجبيل وزيت السمك على مستوى الدهون في الدم ووظائف الكلي وذلك في ذكور الفئران التي تم تغذيتهم بنظام غذائي عالي الكوليسترول. تم تقسيم الحيوانات إلى أربع مجاميع تتكون من اثنا عشرة فراً لكل منهما. المجموعة الأولى هي المجموعة الضابطة. ثم تم تغذية بقية المجموعات بالنظام الغذائي عالي الكوليسترول لحداث تصلب الشرايين لمدة ثمانية أسابيع. بينما المجموعة الثالثة تم إضافة 5% من الزنجبيل إلى النظام الغذائي. المجموعة الرابعة تم إضافة زيت السمك بنسبة 10% إلى نظامهم الغذائي. أدت هذه العواملات إلى انخفاض معنوي في مستويات الكوليسترول الكلي. الدهون الثلاثية ، والبروتينات الدهنية منخفضة الكثافة، والبروتينات الدهنية شديدة انخفاض الكثافة وارتفاع معنوي في البروتينات الدهنية عالية الكثافة وتحسين في معدل حدوث تصلب الشرايين. بالإضافة إلى انخفاض معنوي في مستويات اليوبريا وانخفاض الكبد نتيجة إضافة الزنجبيل وزيت السمك إلى النظام الغذائي لذكور الفئران عالية الكوليسترول.